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Abstract: Epoxides and tetrahydrofurans are cleaved with concomitant acylation to

chloroalky! esters using a reagent system composed of an arganomercurial,

aluminum metal and an acid chloride. The cleavage is promoted under mild conditions
by a range of readily-available cyclic -alkoxychloromercurials and acid chlorides.
Using mainly tetrahydrofuran and cyclohexene oxide as substrates, the yield of
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difunctional synthetic intermediates and are important for the removal of ethereal protecting
groups.? Previous reports describe the acylative cleavage of cyclic ethers using reagent systems or
conditions such as zinc metal,* (Cp),YCl,> CoCl,/CH;CN,67 pressure,8 Bu,SnCl,/Ph;P,°
K[PtCl3(C,H,)],10 PAI/R,SnX, ! Fe(CO)s,12:13 ZnCl,,!4 Eu(dpn 1)3,'% or hexabutylguanidinium
in conjunction with acid chlorides. We repoit herein that a re
an organomercurial, aluminum metal and an acid chloride is highly effective for the mild cleavage

of epoxides and tetrahydrofurans to the corresponding chloroalkyl esters (Eq 1). The organo-
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alkoxymercuration!7.1819 of cyclohexene with mercuric acetate followed by anion exchange with

sodium chloride. Although the series of organomercurials selected for the present study (1-5)20
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increases both the reaction rate and yield of product.

1, R,=CH, 5
2, R,=CH,CH,
3, R,=CH(CH,),
4, R,=cyciohexyl
The cleavage of tetrahydrofuran, 2-methyltetrahydrofuran (Table 1), cyclohexene oxide and styrene
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Table 1. Alkoxycycloalkylchloromercuri-Promoted Cleavage of THF's

Entry Substrate Mercurial RCOC1 Product % Yield
1 THF 1 PhCOCI PhCOO(CH,),Cl
2 THF 2 PhCOCl1 PhCOO(CH,),Cl
3 THF 3 PhCOCI PhCOO(CH,),Cl 88
4 THF i CH;3COCi CH;CO0(CH,),Ci 77
5 THF 1 CICH,COCl1 CICCH,C00(CH,),C1 80
6 2-CH,THF 1 PhCOCl PhCOO(CH,);CH;CHCI 58
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and higher boiling range.
A variety of alkoxymercurials were shown to cleave tetrahydrofuran?! and its 2-methyl derivative with the

ispropoxychloromercury derivative (3) giving the highest yield of 4-chlorobutyl ester. Variations in the acid
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presumably due to the highly reducing nature of the reaction mixture. Variations in the alkoxy group of the
mercurial do not markedly change its effectiveness in epoxide cleavages to 2-chlorocyclohexylesters

(Entries 1-8, Table 2). Although the yield of trans-2-chlorobenzoyloxycyclohexane is lower when

1-(trans-crotonyloxy)cyclohexane (Entry 6, Table 2) is significant in organic synthesis since B-haloalkyl

crotonates have been proposed as useful substrates in the synthesis of lactones via intramolecular free-radical
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Table 2. Alkoxycycloalkylchloromercury-Promoted Cleavage of Epoxides

Entry Substrate Mercurial RCOCI Product % Yield'

1 cyclohexene 1 PhCOCI 60
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2 cyclohexene 2 PhCOCI 61
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lYields are of isolated products unless otherwise noted (See Experimental).

A 2:1 mixture of the secondarylprlmary chioro isomer was detected by -H NMR
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cyclizations.22 The acylative cleavage of styrene oxide and 2-methyltetrahydrofuran introduce regiochemical
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isomeric phenethyl benzoates (Entry 10, Tabie 2), however the secondary chioro regioisomer is favored
over the primary according to 'H NMR analysis. Similarly the cleavage of 2-methyltetrahydrofuran with 2-
chloromercuri- 1-methoxycyclohexane/aluminum gave 4-chloropentyl benzoate (Entry 6, Table 1). The fact
that both cases provide the more substituted secondary chloro isomer suggest an initial Sy 1-type mechanism for
chloride formation.

The overall general mechanism responsible for the cleavage process is not immediately obvious especially
when the role of aluminum as a promoter is considered. A plausible overall reaction pathway is proposed in
Scheme 1. Mercury-mediated cleavage of the cyclic ether by the 2-chloromercurialkoxycyclohexane reagent

results in an alkoxycyclohexyl(chloroalkoxy)mercurial (6). Although the organomercurichlorides are not usually

!
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Scheme 1. Suggested Reaction Pathways for Acylative Cleavage.
(o] Cl
RQ  HgCI | o | X OCOR,
(‘—S l Hg ] 2R,COCI +
—_—_— _— 3
<ot ) + r,0, L o A
—/ LY R,COOR,
n=1,3 1-5 L ~ +
e
6 J
iZA! {promotion)
alCig o~ ] [ore
3| ), OCOR, v
L I eR,coC |7t oAl
+ - +
3R,COOR, BOVAlLHas [0
\l‘1\J}3I‘\ITII9"T‘ U
considered as strongly clect__phihc cgmpol_lnds, one may presume that the ring-opening step is facilitated by

chloroalkylaluminum alkoxide and the alkoxide derived from the mercury reagent together with elemental
mercury and cyclohexene. Subsequent attack of both the alkoxides25 on the acid chloride results in the esters.
Gas chromatographic monitoring of tetrahydrofuran cleavage promoted by benzoyl chloride and 2-

methoxychloromercuricyclohexane/aluminum confirmed the appearance

(3

f the by-products methyl benzoate and

cyclohexene which were consistent with the proposed mechanism. In order to ascertain the extent of aluminum
as a promoter, GC analyses were also employed to monitor cleavage reactions in the absence of aluminum
(Table 3) and using aluminum as a promoter (Table 4). GC analyses of the non-aluminum-promoted reaction
(Table 3) indicated the appearance of 4-chlorobutyl benzoate (Rt=12.77 min) after 2 h, while in the presence of
irst detected at the 1.5 h mark (Table 4). Sec i

aluminum, the chloroester was first dete mark (Tabl
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ondly the ratio of
experiment was conducted overnight without aluminum. In contrast GC analyses of the aluminum-promoted

reaction showed a ratio of 2:1 in favor of 4-chlorobutyl benzoate over the same time period (Table 4). Isolated
yields (%) of the benzoates also support this ratio. In the absence of aluminum the ratio of the isolated yields for

the chlorobenzoate relative to

methvl benzoate was 1:1.4 (28%:40%). In t the presence of aluminum, the ratio is

closerto 2.1:1 (53%:25%) during a 14-16 h reaction period. Since the production of methyl benzoate was a
competing reaction for production of the chioroester, it was anticipated that the employment of excess benzoyl
chloride should increase the yield of the chloroester. This was confirmed when the yield of 4-chlorobutyl
benzoate, as calculated from the weight of the isolated compound, increased to 76% when using a slight excess

(2.2 eq) of benzoyl chloride. GC analysis also showed increased peak areas for both 4-chlorobutyl benzoate and

formation of the chloroester as well as methyl benzoate was also higher for the reaction employing excess acid
chloride. Both products appeared at the 0.5 h interval as compared to the 1.5 h mark for the reaction

utilizing only one equivalent of benzoyl chloride. However, the relative ratios of esters remained at 2:1.
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Table 3. Gas Chromatographic Analysis of THF Cleavage without Aluminum:
Relative Rates of Appearance of Products.1

[PhCOO(CH,)4Cl}/
Time/hr [PhCOO(CH3),Cl]23 [PhCOOCH;]24 [PhCOOCH;]  [Cyclohexene]2.s
0.5 ] . . .
1 - . . 0.69
1.5 - . . -
2 4.5 4.5 1:1 0.75
2.5 7.1 9 1:1.2 27.2
3 14.2 16.2 1: 1.1 30.6
4 25.8 20.8 1:0.8 36.7
16 48.9 59.1 1:1.2 74.2

1 Reaction was carried out on 125 mg (1.73 mmol) THF, 1.2 eq (0.69 g) trans-2-chloromercuri-1-
methoxycyclohexane, 1 eq (200.8 pL) PhCOCI in toluene (100°C).

2 The concentration (mM) was calculated relative to that of p-xylene (5% internal standard, R =
4.87 min.).
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R; = 12.77 min.; Percent yield of pure isolated product is 28.3%.
R{ = 7.44 min.; Percent yield of pure isolated product is 40%.
R¢ = 2.52 min.

Table 4. Gas Chromatographic Analysis of THF Cleavage with Aluminum:
Relative Rates of Appearance of Products.1

[ ]

[PhCOO(CH,)4C1)/

Time/hr [PhCOO(CH32)4Cl]2,3 [PhCOOCH3]24 [PhCOOCHS3] [Cyclohexene]2.5
0.5 - - - -
1 - - - 2.2
1.5 9.29 - - 7.6
2 22.2 i2.8 i: 0.58 23.3
2.5 27.5 18.9 1:0.69 26.2
3 44 26 1 : 0.61 31.2
3.5 55 30 1: 0.55 79.4
4 921 50 1: 0.55 151

1 Reaction was carried out on 125 mg (1.73 mmol) THF, 1.2 eq (0.69 g) frans-2-chloromercuri-i-

methoxycyclohexane, 1 eq (200.8 uL) PhCOCL, 0.4 eq (18.6 mg) Al foil.

The concentration (mM) was calculated relative to that of p-xylene (5% internal standard, R =

4.90 min.).

R¢ = 12.74 min.; Percent yield of pure isolated product is 53%.

R; = 7.44 min,; Percent yield of pure isolated product is 25%.

N & W

R = 2.47 min.
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In order to determine the importance of the organomercurial (R, = 13.65 min.) to the progress of the reaction, a
cantral raactinn26 wae candieted nnder cimilar malar anantities of cuhetrate reacente and conditione for the
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same period (16 h) but in the absence of alkoxycyclohexylchloromercurial. GC analysis of the reaction mixture
after 16 h revealed the absence of any peaks corresponding to R, = 12.77 min. (4-chlorobutyl benzoate) or R, =
7.44 min. (methyl benzoate).

In summary, the employment of alkoxycycloalkylchloromercurials (1-5) in conjunction with acid
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tetrahydrofurans to chloroalkyl esters. When compared to existing reagent systems, the alkoxycyclo-
alkylchloromercurials are easily and safely prepared in large quantities and high yields at moderate cost ($0.23/g)
and are shelf-stable. Furthermore, a wide range of acid chlorides and organomercurials may be employed for the

cleavage reaction. The cleavage reactions may be conducted under mild conditions and are devoid of the tars and

the removal of the non-halogenated by-products is easily facilitated and the overall process affords the
chloroester products?” in modest to good yields, Using either substituted epoxides or 2-substituted
tetrahydrofurans as substrates, the attack of chloride is at the more substituted carbon thereby suggesting an
Sn1-type mechanism.

General Meihods. 'H and !3C NMR spectra were recorded on a Bruker AMX 500 with CDCl; as the
solvent. IR spectra (cm!) were recorded using a Mattson Galaxy 5000 FT instrument. Gas chromatographic
analyses were carried out with a Hewlett Packard 5890 instrument equipped with an HP1 FID detector,

12x0.2 mm column and He carrier gas. Glass-backed silica gel plates (E. Merck 5715) were used for thin-layer
chromatographic anlyses which utilized anisaldehyde stain or UV lamp for visualization after development.

34, 70-230 mesh) was employed for standard gravity column chromatographic
separations while flash-column chromatographic separations utilized Kieselgel 60 (E. Merck 9385, 230-

400 mesh). Heavy duty food-grade aluminum foil was prepared for the reaction by cutting into 5 mm wide
strips, coiling the strips about a 5 mm glass rod and degreasing the coils by rinsing in ether. Tetrahydrofuran
ACS grade and were used as commercially supplied. Celite
filtrations were done using Celite 521. The organomercurials 1-5§ were prepared by the method of Brown.1?
Their spectral data are in agreement with expected values. High resolution mass spectral determinations were
performed at the Nebraska Center for Mass Spectrometry, Lincoln, Nebraska.

4-Chlorobutyl acetate (Entry 4, Table 1) Typical Procedure. trans-2-Chloromercuri-1-

hexane (1) (0.55 g, 1.65 mmol) was dissolved in distilled toluene (5 mL).
freshly distilled tetrahydrofuran (100 mg, 1.4 mmol) was added, followed by acetyl chloride (260 uL,

3.4 mmol) then aluminum foil (15 mg, 0.55 mmol). A cold finger condenser was then fitted to the reaction flask

and the mixture was warmed at 50°C (18 h). Thin layer chromatographic analysis (hexane/ether, 1:1) was used
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(hexane/ether, 9:1) followed by Kugelréhr distillation to give the chloroester (160 mg, 77%); TLC: Rf=0.11
(hexane/ether -1} hn 103-104°C/1 0 mmHe (lit. hn 92-03°/20 mmHge )10
VERCAGIIN/UULIVE y 7ok Jy Usphe AUJTIVT N 100 QAUAILLAE (246, U.pfe F&770 [LV UM AR. )
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-Chlorobutyl benzoate (Entries 1-3, Table 1): Purification of the oily chloroester (390 mg, 53%) was
achieved by column chromatography (hexanes/ether, 9:1) followed by Kugelrohr distillation. TLC: R=0.38
(hexane/ether, 9:1); b.p. 128-129°C/1.0 mmHg (lit. b.p. 142-144°/5 mmHg).12

4-Chlorobutyl chloroacetate (Entry 5, Table 1): The oily chloroester was column-chromatographed

(havanac/athar Q:1) then Knaalridhr-dictillad (20 mo R0 TI (- R =000 (hexana/ether -1y h n 1RS8-
\‘l\l/\ull\fﬂl \/‘-llvl, e ‘-} Liivin ‘l‘.uéwllulu Wi viiiva \ka “As’ U ,V}, B Bt ‘\j_v A \‘l‘/\ml\f’ Wililwiy 7.1 /’ ll.ll. .

100, IN rr _ Irv nY Y T T TN Q23 1 Q1 7.
1877/ .00-1.01 (111,

.9 mmHg; '"H NMR (CDCl,): 6 4.20-4.18 (i, 2H); 4.03 (s, 2H); 3.54-3.52 (t, 2H); 1
4H). 13C NMR (CDCly): 8 167.5, 65.4, 44.3, .8. FTIR (KBr, CH,Cl,): 1755 cm~!; HRMS
caled for CoHgCIO (M—COCH,Cl) 107.0263, found 107.0263.

4-Chloropentyl benzoate (Entry 6, Table 1): The oily chloroester was column-chromatographed
(hevana/et hpr 1_4 ) then Kn

VMV ARLIL W LLIvE

142°C/0.9 mmHg (lit. b.p. 129-132°/0.45 mmHg).13

trans-2-Chlorocyclohexyl benzoate (Entries 1-5, Table 2): Column chromatography (hexane/ether,
14:1) and Kugelrohr-distillation gave the chloroester as a yellow oil (730 mg, 60%); TLC: R=0.32
(hexane/ether, 14:1); b.p. 186-187°C/0.5 mmHg. The NMR and IR spectral data were consisfent with

nreviouslv renorted valueg 7

previously reported values

2.Chlorocvelohexvi-E-2-butenoate (Entry 6. Table 2): The chloroester FANA o LGOI wirne miseifad
L=UIHOTOCYCIonNnexy =L =&~ puieciivdaic (ory v, 1avic 4). 11C CIHOTOCSICE (Ju4 | lg, DU ) wdd pu 111ed

by column chromatography (hexanes/ether, 20:1) followed by Kugelrohr distillation. TLC: R=0.17
(hexane/ether, 20:1); b.p. 135-136°C/0.9 mmHg. The NMR and IR spectral data were consistent with
previously reported values.”

trans-2-Chlorocyclohexyl pivalate (Entry 7, Table 2): Column chromatography on silica gel

(hexane/ether, 9:1) followed by Kugelrohr-distillation provided the oily pivalate (186 mg, 52%). TLC “j=0. i3
(hexane/ether, 9:1); b.p. 114-115°C/0.45 mmHg. IH NMR (CDCly): 3 4.69-4.67 (m, 1H, J=5 Hz); 3.79-3.78

(m, 1H, J=5 Hz); 2.11 (m, 1H); 1.983-1.98 (m, 1H); 1.66-1.61 (m, 3H); 1.32-1.25 (m, 3H); 1.14 (s, 9H).
13C NMR (CDCly): 8 178.5, 75.1, 60.5, 38.6, 34.5, 30.3, 27, 24.3, 23. FTIR (KBr, CH,Cl,): 1730 cm;

HRMS Calcd for CgH,;Cl (M—tert-BuCO,) 117.0471, found 117.0450.
trans-2-Chlorocyclohexyl acetate (Entry 8, Table 2): Purification of the oily chloroester (95 mg,
53%) was achieved by column chromatography (hexanes/ether, 20:1) followed by Kugelréhr distillation. TLC:

R=0.23; (hexane/ether, 10:1). b.p. 110°C/0.5 mmHg. The NMR and IR spectral data were consistent with
previously reported values.”

2-Chloro-2-phenethyl acetate (Entry 9, Table 2);: Column chromatography on silica gel (hexane/ether,
(

=]
Pk

avra tha o ey sem ol e s o

:1) gave the oily secondary chloride as the only regioisomer (158 m g %). TLC: R=0.2

W

[V8]

0:1). The IR and NMR spectral data were consistent with previously reported values.?
2-Chloro-2-phenethyl benzoate and 2-chloro-1-phenethyl benzoate (Entry 10, Table 2):
Column chromatography (hexanes/ether, 25:1) afforded the mixture of regioisomeric esters (134 mg, 63%) in a

2:1 ratio in favor of the secondary chloride as confirmed by 'H NMR analysis; . T
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